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In biological physics, we often aim to boil down complex biological processes to
simple pen-and-paper models that allow us to gain a better overview. In this exper-
iment, we apply this approach to the problem of antibiotic persistence, individual
bacteria escaping the effects of an antibiotic, which can lead to recurring infections.
We model this with a set of simple differential equations describing the transitions
between the normal and persistent state. We will observe this behaviour in popu-
lations of the bacterium Klebsiella pneumoniae infecting human bladder cells and
quantify the transition rates. In the process, we will also apply modern automated
robotic and image-analysis techniques for high-throughput experiments that allow
for quantifying biological quantities with unusually high precision.

1 Background
Ageneral note on terminology for this experiment:Cell always refers to eukaryotic
host cells (here: epithelial cells from the human bladder). By contrast, bacterial cells
(here:Klebsiella pneumoniae) are always referred to as bacteria.This is no universal
convention, but common usage in this particular subfield.

1.1 Antibiotics and persisters

Antibiotics are drugs that severely harm bacteria, while having little effect on other
forms of life, in particular humans. As such they are central to the treatment of
bacterial infections. There are two general types of antibiotics:

• Bacteriocidal antibiotics kill bacteria directly.

• Bacteriostatic antibiotics stop the growth of bacteria without killing them.
These do not just simply delay an infection as they give the immune system
time to catch up and then kill the bacteria.

Persisters are individual bacteria who escape bacteriocidal antibiotics by shutting
down their metabolism [1]. Roughly speaking, for them a bacteriocidal drug is only
bacteriostatic.

Persistence is not triggered by a genetic change like antibiotic resistance. In-
stead, it is a phenotypic switch: normal bacteria randomly become persisters (“fall
asleep”) and also persisters randomly turn back to normal (“wake up”) without
their genome being affected. This effect can be demonstrated on the single-cell
level using microfluidic devices (Fig. 1). While it is random whether an individual
bacterium turns into a persister (and vice versa), the rates at which this happens
can depend on the environmental conditions. One example of how such a switch
is realised inside a bacterium is a noise-sensitive genetic toggle switch as explored
in the experiment Genetic toggle switch.

Persistence is an example of bet hedging by stochastic phenotypic switching:
While persisters are not beneficial to population growth under normal conditions,
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Figure 1: Demonstration of persistence on the single-cell level: Microscopic images of a
microfluidic device that traps the bacteria in tiny grooves (columns). Bacteria appear brighter
than the background and can only grow in vertical lines when replicating. The red arrow
marks a presumed persister well. Ampicillin is an antibiotic. From Ref. 2.

they can make a population survive an antibiotic treatment. Thus, by having
a certain fraction of persisters, the population can increase its overall survival
chances in unpredictable environments. Such a stochastic switching can be evo-
lutionary favourable to individuals sensing environmental changes and adapting
their metabolism as a reaction [3]. The main reasons for this is that sensing comes
with a cost which may be too high and that environmental changes affect the
bacteria too quickly. For example, an antibiotic may inhibit or kill bacteria before
their sensing mechanisms can be active and trigger an adaption. In this context,
it is important to consider that most actions and interactions of bacteria are a
side-product of growth. For example to become a persister a bacterium must shut
down its own metabolism, and any molecules that enact this are only produced as
a side product of the replication machinery. If an antibiotic attacks this machinery,
it may already be too late for the bacterium, if persistence happens only as a
reaction.

1.1.1 Intracellular persisters

In this experiment, we will focus on the bacterium Klebsiella pneumoniae, which
is responsible for urinary-tract infections (amongst others). It uses the following
strategy to escape the immune system and antibiotic treatment:

Klebsiella pneumoniae can enter host cells, namely epithelial bladder cells and
multiply within those. This is something most infectious bacteria do not do and
evenKlebsiella pneumoniae only does this with a small rate: Only one in a thousand
cells becomes intracellular. Intracellular bacteria then turn into persisters with an
increased rate, escaping antibiotic treatment. Within a cell, the bacteria are not as
accessible to the immune system and can multiply without much hindrance after
the antibiotic treatment. Once the host cell bursts, bacteria re-emerge in larger
numbers, can overcome the immune response and re-establish the infection.
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Figure 2: Killing curve (left) and wake-up curve (right) for two strains of Escherichia coli.wt
refers to the wild type, hipA7 to a mutant that has an increased ratio of persisters. Ampicillin
is an antibiotic.The fraction of visible colonies corresponds to the fraction of woken-up colonies
and is explained in Sec. 1.2. From Ref. 2.

From a medical point of view, this is of particular interest, as it can lead to
recurring infections.

1.1.2 Modelling persisters

In a full model of persistence, we have to cover the following transitions:

𝑛 𝑝
𝑟sleep

𝑔𝑛 − 𝑟kill
𝑟wake

𝑔𝑝

Here, 𝑛 is the number of normal bacteria, 𝑝 is the number of persisters, 𝑔𝑛 and 𝑔𝑝
are their respective growth rates, and the rests of the rates are self-explanatory. A
typical consequence of these transition rates is that the killing curves and wake-up
curves of persisting bacteria are bimodal, i.e., they feature two regions of exponen-
tial decay with different rates (see Fig. 2).

For an individual bacterium, the transition into and out of persistence is a ran-
dom process for all our means and purposes. On this basis, the most detailed model
considers individual bacteria and their transitions stochastically (continuous-time
discrete-state Markov process). While such a model has the advantage of correctly
reflecting the stochastic fluctuations at low numbers of bacteria, it becomes unnec-
essarily unwieldy for large numbers such as those in this experiment.

An alternative is to discretise time and consider transition probabilities be-
tween different times in form of a transition matrix (discrete-time discrete-state
Markov process or discrete-time Markov chain). This is done amongst others in
Ref. 3.

Instead, we here look at the continuous deterministic limit as a system of
ordinary differential equations. This limit describes the average over an ensemble
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of realisations of the process, which we take as a good approximation of reality for
sufficiently high abundances. For our system, we obtain [2]:

̇𝑛 = 𝑔𝑛𝑛 − 𝑟sleep 𝑛 + 𝑟wake 𝑝 − 𝑟kill 𝑛,
̇𝑝 = 𝑔𝑝𝑝 + 𝑟sleep 𝑛 − 𝑟wake 𝑝.

(1)

In most cases, we can simplify the model considerably, e.g., we can often assume
𝑔𝑝 = 0 since persisters hardly grow.

1.2 Experimental techniques: growing and measuring cells and
bacteria in vitro

In this experiment, you will encounter three different ways to perform microbio-
logical experiments in the lab:

• In a culture bacteria are suspended in a liquid nutrient medium, in which
they can freely grow. At high concentrations, bacteria (like cells and other
contents on the micrometer scale) cause the water to be turbid. This can be
used to estimate their number by measuring the optical density (OD). In this
experiment, this is only used as a quick check or rough estimator; for more
detail, see the experiment Exponential growth and bacterial growth laws.

• Agar plates contain nutrient medium embedded in a rather solid gel (agar).
Bacteria can grow on the surface, usually forming colonies, i.e., roughly
circular mounds consisting mostly of bacteria.
This can be used to measure concentrations of bacteria by plating them: A
droplet containing bacteria is spread on the plate. If the concentration of bac-
teria is sufficiently low, individual bacteria are sufficiently spread apart such
that many can become the sole ancestor of a distinguishable macroscopic
colony. By counting the colonies, we can estimate the number of colony-
forming units in the original solution, which in turn is a good estimator for
the number of bacteria. (For more detail, see the experiment Exponential
growth and bacterial growth laws once more.)
If the individual colonies are sufficiently far apart, they do not interact with
each other, e.g., by competing for nutrients or space. While the growth dy-
namics within a colony is complex as it depends on the access of the bacteria
to nutrients and space [4], isolated colonies of a given bacterial strain grow
in a very similar speed and fashion.
However, individual colonies start growing with different lags. These lags
are caused by the initial bacterium adapting its metabolism to the new condi-
tions on the plate, but also turning from a persister into a regular bacterium.
By comparing the growth progress of different colonies to each other, we can
estimate the relative lag times of the bacteria from which they emerged [5].

• The in-vitro cultivation of cells of a multicellular organism is usually called
cell culture. The cell lines used for these usually originate from cancer cells,
which are characterised by having a mutation that disables the regulation of
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Figure 3: How a camera digitises an image: Left: Actual light shining on the camera. Middle:
Grid of colour-specific sensors (subpixels) and 14 bit intensities recorded by them. (Lines are
for reference only.) Right: Final pixel image for human consumption storing intensities in 8 bit
per colour and pixel.

growth that is normally found in multicellular organisms and which would
prevent most in-vitro experiments. Cell cultures are more difficult to main-
tain than cultures of bacteria (or other microbes) since the cells are highly
adapted to the specific conditions within the organism. Inmany experiments
(including this one), the cells only grow in a single layer on the specifically
coated bottom of a container containing a suitable medium.

1.3 Analysis techniques: automated image processing

A major part of the data analysis for this experiment is automatically tracking the
growth of bacterial colonies from time-lapse images taken by a robot.

1.3.1 Taking and storing images

The robot can takes images with a consumer-grade digital camera. While it may
seem odd to use no dedicated device optimised for this, you have to consider that
cameras are the outcome of a considerable amount of industrial development and
cheapened by the economy of scale. They therefore out-compete any dedicated
device in terms of cost and benefit.

A modern digital camera has a sensor array composed of four colour-sensitive
subpixels per pixel, in our case one subpixel is sensitive to red, one to blue, and
two to green. The light intensity recorded by the subpixel sensors gets converted
to 14 bit digital information, i.e., numbers between 0 and 214 − 1 = 16383. This
information constitutes the raw image (see Fig. 3, middle). Our camera allows us
to store these raw images.

The raw image often gets compiled into a pixel image such as a JPEG, which
stores the intensity of the colours red, green, and blue with 8 bit each per pixel
(see Fig. 3, right). During this process, colour adjustments are made and image
compression (such as in a JPEG) may further reduce the information (This explains,
e.g., why the green component does not drop to zero in the right-most pixels in
Fig. 3).

In comparison to raw images, JPEGs (and similar image formats) are optimised
for human visual consumption and thus lack details that are not or barely dis-
cernible by the human eye, but we can use in an automated image analysis. In this
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input median filter (5 px) Gaußian blur (2 px)

sharpening (10 px) minimum filter (5 px) maximum filter (5 px)

threshold Sobel Gaußian gradient (2 px)

Figure 4: Effects on several filters on a greyscale close-up of some bacterial colonies (top left).
The original image is 160 px × 160 px (and so are all filtered images). If applicable, filters are
applied to a circular footprint, and the radius is given in parentheses. (The quality of the input
is worse than what you usually get in the experiment.)

experiment, we can primarily exploit the higher intensity resolution of raw images,
while detailed positional information is not relevant to us.

1.3.2 Filters

Broadly speaking an image filter replaces the value(s) of a pixel with function
of small neighbourhood (footprint) around it, often a circle. A simple example is
the median filter, which replaces each pixel with the median of all pixels in the
footprint (Fig. 4, top middle). It smooths the image, removing particularly dark or
bright pixels (outliers). In general, filters process an image locally, which is what
we need, since bacterial colonies will be local features.
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Filters are computationally rather cheap as they are considering a (usually
small) footprint in a simple way. Most suitable programming languages feature
a library with highly optimised implementation of standard filters. It therefore
makes sense to use these as the building blocks of an image-processing pipeline.

Many filters are a convolution of the image – with the intensity being in-
terpreted as a function of the coordinates – with a kernel that characterises the
filter. For example, to smooth an image, one can use a Gaußian kernel, i.e., two-
dimensional normal function (Fig. 4, top right). The support of the kernel corre-
sponds to its footprint and it is computationally beneficial to keep it small. For
example, instead of a true Gaußian kernel, we usually use one which is truncated
at a radius where its value becomes negligible.

In terms of spacial frequencies, smoothing filters are low-pass filters. For ex-
ample, an isolated bright pixel corresponds to high spacial frequencies, which a
smoothing filter removes. By contrast high-pass filters emphasise small details,
which can be perceived as sharpening the image (Fig. 4, middle left).

Some further filters of potential interest for this experiment are:

• The minimum and maximum filter set each pixel to the minimum or maxi-
mum of the filter’s footprint, respectively (Fig. 4, middle center and right).

• Threshold filters simply set every pixel above a certain intensity as black and
every other pixel as white (Fig. 4, bottom left).

• Edge-detection filters aim at finding borders between objects. They usually
return some sort of gradient as edges are characterised by a sudden change
of colour. The Sobel filter employs a simple discrete gradient determined
from a footprint of 3 px×3 px only, but is very efficient to compute (Fig. 4,
bottom centre). Modern edge-detection filters take into account more pixels
and smoothing, e.g., the Gaußian gradient filter (Fig. 4, bottom right).

Many filters are not very useful on their own, but powerful in combination. For
example, the minimum and maximum filters in Fig. 4 are sensitive to single dark
or bright pixels, respectively, which is usually not a desirable outcome. However,
smoothing can eliminate such bad pixels beforehand.

1.3.3 Counting colonies

A plethora of software solutions for colony counting have been published [6].
However, their applicability depends on the quality of images and information
to be extracted. For example, distinguishing colonies of different microbes by
their colony morphology is considerably more challenging than simply counting
colonies. Therefore, it can still be preferable to develop a new analysis pipeline
tailored to the data and problem at hand.

In this experiment, we use image analysis to determine the wake-up time of
colonies. To this end, we use time-lapse images, which most existing solutions are
not made for. Moreover, instead of quantifying characteristics such as the growth
rate, we have growth curves which are ideally identical except for a temporal shift
(lag), which is what we are interested in. Therefore (and for didactic reasons), you
will write a fresh analysis pipeline.

7



University of Cologne Advanced Practical Course M Biophysics

The basic idea (we suggest to use) to detect colonies is similar to the one used
by Ref. 7: Colony centres should be sufficiently intense local extrema of a smoothed
late image. We can then monitor the intensity in the colony’s position over time
to determine its growth curve and from that its wake-up rate.

2 Goals and Tasks
The goal of this experiment is to observe and quantify the persister dynamics of
Klebsiella pneumoniae, specifically:

1. Treat infected human-bladder epithelial cells with the antibiotic ciprofloxacin
and record the killing curve by plating lysed host cells for colony forming
units to obtain the killing and transition rate.

2. Take time-lapse images of bacterial colonies without and after treatment.
Use an automated image analysis to determine the wake-up rates.

3 Experimental Procedure
What follows is a full procedure that also includes summaries of preparations and
similar that will be done for you, in particular everything done on Monday, Tuesday,
and Friday.

3.1 Monday: preparations

1. Seed a cell culture of epithelial cells that is going to be infected later and
incubate at 37℃.

2. Inoculate a tube of lysogeny broth (a liquid growth medium) with Klebsiella
pneumoniae and incubate at 37℃.

3.2 Tuesday: infection

1. Prepare PBS medium with bacteria at OD₆₀₀ ≈ 0.2 to obtain a multiplicity of
infection (MOI) of about 100, i.e., 100 bacteria per cell.

2. Apply 50 μℓ to each cell-culture well.

3. Centrifuge to synchronize infection.

4. Incubate at 37℃ for two hours.

5. Wash the cells: Remove the medium, add fresh medium, and remove it again.

6. Add medium with gentamicin and incubate for another two hours. Gentam-
icin is an antibiotic other than the one we are interested in (ciprofloxacin). It
does not enter the cells and serves to kill only extracellular bacteria, which
would confound any investigation of intracellular bacteria.
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Figure 5: Overview of the experiments
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7. Remove the medium, wash the cells, and add medium with gentamicin once
more.

8. Incubate for 24 hours post infection.

After this, we ideally have bacteria inside our cells and only there.

3.3 Wednesday: antibiotic treatment and plating

3.3.1 Antibiotic treatment

We now treat the infected cells with ciprofloxacin for different durations, namely
roughly 0 h (control), 2 h, 4 h, 6 h, 24 h, and 26 h. To evaluate the effect of the
treatment, we liberate the bacteria by lysing the cells and then plate them onto
agar.

1. Prepare medium (RPMI1640 with 10% FBS) with ciprofloxacin at a concen-
tration of 4 μg/μℓ.

2. Aspirate medium from the wells.

At this point, you need to distinguish between the treated samples and the control
sample, which gets lysed immediately. For the treatment samples:

3. Add 800 μℓ of medium with ciprofloxacin. Don’t directly pipette onto the
cells, lest they get washed off. Instead target the wall when pipetting.

4. Incubate at 37℃ for the desired time.

Once a sample is ready for lysis:

5. Write down the time.

6. Wash the samples three times with 1mℓ of PBS.

7. Add 1mℓ of 0.1% Triton X 100 to lyse the cells.

8. Incubate for 20min at 37℃.

9. Scratch the bottom of the well thoroughly with a pipette (to scrape off any
adherent cells) and pipette-mix the lysate.

10. Transfer the lysate to a tube for further processing.

3.3.2 Plating the bacteria

• At every time point: Plate out the bacteria on a Petri dish using the spiral
dispenser. Incubate the plates at 37℃.

• At 0 h: On omnitrays (larger, rectangular trays), plate out 100 μℓ of bacteria
solution as is (1×), in three-fold dilution (⅓×), and ten-fold dilution (⅟₁₀×). Use
beads to distribute the bacteria. Store these plates at 4℃ until you remove
the plates from the following step. This maximises the comparability of the
results.
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• At 4 h: Plate out the bacteria on omnitrays as above, but additionally in three-
fold concentration (3×), and ten-fold concentration (10×). To concentrate the
bacteria, centrifuge them to the bottom, carefully pipette out the appropriate
amount of medium, and then vortex the result to mix it again.

3.3.3 Time-lapse imaging

After the 6 h step:

1. Transport the omnitray plates to the Centre of Molecular Biosciences
(CoMB).

2. Start a time-lapse imaging series using the Biomatrix BM3-BC robot, taking
one image of each plate every twenty minutes. (The robot is located in a
room that is kept at 30℃.)

The robot can store raw images or JPGs. As elaborated above raw images contain
more information, but they are slightly more difficult to handle and larger in file
size. Due to parallel experiments, you may be forced to use either format.

3.4 Thursday: last time points and first results

Initiate the last measurements at roughly 24 h and 26 h by plating as described
above.

In between, evaluate the Petri dishes you plated out on Wednesday to deduce
the concentration of bacteria in the solution you plated out.

Afterwards, go to the CoMB to obtain the first time-lapse imaging data and
start the setting up the image analysis under guidance (see below).

3.5 Friday: more results

Evaluate the Petri dishes you plated out onThursday and obtain the complete data
from the time-lapse imaging.

4 Data Analysis
Generally, use logarithmic scales where appropriate.

4.1 The killing curve

1. For each time point, estimate the fraction of surviving bacteria and plot it
with respect to time.

2. Adopt Eq. 1 assuming:

• There are no persisters at the beginning of the treatment.
• Bacteria (and persisters) do not grow.
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To obtain a time evolution for this model for given parameters, you can solve
it analytically or numerically – your choice.

3. Fit this model to your killing curve and determine 𝑟kill and 𝑟sleep. Compare
fitting in the linear and logarithmic domain. Which one is better and why?

4. Can you find another set of assumptions that explains the data comparably
well?

4.2 Wake-up rates

For this part, you will analyse the time-lapse images. In general, try and explore
every part of the process with a some representative pictures or plates until you
can write a satisfactory general function.

You can use any programming language youwant, but we strongly recommend
that you make use of an image-processing library, instead of writing fundamen-
tal functions yourself. In the following, we will hint at useful existing functions
in Python, but analogues in other reasonable programming languages should be
straightforward to find.

Document all steps of the process with exemplary images when applicable. In
general, we strongly recommend that you frequently visualise your intermediate
results to understand what is happening; have a handy function for this.

Finally, we only give you the minimal procedure required to obtain decent
results. Almost any part of the process has clear room for improvement and you
are welcome to think about and use more sophisticated procedures.

1. Extract the timestamps from the file names (e.g., using time.strptime).

2. Load the images. You can use matplotlib.pyplot.imread for JPGs and
rawpy for raw images.
Be aware that your memory might not be able to hold all the images. This
should not be a big problem as you need to have at most two images loaded
simultaneously for the following. A big part of the following analysis is best
applied image by image instead of step by step.

3. Select an appropriate image as a background. Usually this is the first image,
but carefully check that it’s not unsuitable due to condensation or similar.

4. Subtract the background from all subsequent images of the same plate. To
improve your subtraction result, it may be worthwhile to apply a slight blur
beforehand. From now on, you can work with intensities, i.e., use a single
value per pixel (some norm of the distance) instead of three or four.
Raw images have two green subpixels per pixel. You can first average these
or treat them as separate colours (although they actually capture the same
colour).
Your images are likely arrays of unsigned integers. That’s usually a good
thing, but requires you to avoid integer underflows when subtracting (e.g.,
for 8-bit unsigned integers, 23 − 42 = 237). One way to handle this is
numpy.subtract with the right arguments.
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5. Crop the images appropriately, such that all border effects are excluded.

6. Determine a radius 𝑅 you use for analysing individual colonies. The respec-
tive area should be smaller than a full grown colony and instead capture an
area in which a colony first emerges.

7. Determine colony centres using a late image (where all colonies of interest
are clearly visible):

(a) Smoothen the image (e.g., with scipy.ndimage.gaussian_filter) us-
ing a kernel width of about ten pixels.

(b) Determine local maxima, e.g., by checking where the result of the max-
imum filter (scipy.ndimage.maximum_filter) equals the local pixel.

(c) Do not consider a maximum when a more intense maximum is closer
than 2𝑅.

(d) Exclude maxima whose intensity is too low.
(e) Exclude maxima that are closer than 𝑅 to the border of the image.

8. For each colony (centre), obtain the temporal evolution of the intensity, i.e.,
within the radius 𝑅. You may speed this up by storing the relevant array
indices once per maximum.

9. For each colony, determine the wake-up time with an appropriate intensity
threshold. You can filter out most falsely detected colonies at this step, as
they never wake up or similar.

10. Plot the ECCDF (empirical complementary cumulative distribution function)
of the wake-up times, i.e., the fraction of colonies that are asleep at any given
time.

11. For each plate, determine thewake-up rateswith an appropriate fit. Compare
fitting an exponential function in linear space and fitting a linear function
in logarithmic space.

12. If all goes well, you should see two regimes for the untreated case: Can you
explain these and why you don’t see these in the treated case?

13. For each treatment duration (0 h and 4 h), plot the wake-up rates in depen-
dence of the number of detected colonies on the plate. This should give you
an insight into the systematic overestimate caused by early risers oppressing
late bloomers.

14. Extrapolate the true wake-up rate.
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