
Random walks in bacterial motility 

MOTIVATION 

Like higher organisms, bacteria also perform directed movement through various mechanisms. 

Different bacterial species exploit different physical principles to move through aqueous 

environments and on surfaces. At the scale of microorganisms, i.e. micrometers, Brownian motion 

leads to continuous agitation of free-swimming bacteria. In this experiment, you will address the 

question, how efficiently can bacteria explore their environment when their movement is 

exclusively driven by diffusion. Then making use of cellular appendages known as flagella, which 

can propel bacteria forward, you will use microscopy techniques and particle-tracking algorithms 

to explore how dramatically the space over which a bacterium travels expands by active movement. 

Diffusive dynamics 

The diffusion equation describes the evolution of concentration gradients over time. Here, we 

derive the diffusion equation from a microscopic perspective [1]. The key idea is to consider the 

motions of individual diffusing particles and sum over all possible micro-trajectories of the system. 

The net macroscopic response emerges as the average over all of these underlying micro-

trajectories. We begin by describing a random trajectory using the probability density of finding a 

particle at a particular position and time p(x,t). In particular, the probability of finding a particle in 

a box of width x centered at point x at time t is given by p(x,t)x. To simplify the mathematics, 

we simplify to one-dimensional motion and discretize space and time. Micro-trajectories and their 

corresponding weights are shown in Fig. 1. Over a time t, the diffusing particle either stays put 

or jumps left or right a distance a. (We assume particles can only occupy sites on a lattice with 

spacing a.) The probability of making a jump in either direction is kt, while the probability of 

staying put is tk21 , thus ensuring that the sum of all three probabilities is one. 
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Fig. 1. Trajectories and weight for simple 

diffusion. A given particle can do one of three 

things at every time step: jump left, jump 

right, or stay put. Each of these micro-

trajectories has an associated statistical 

weight. [1] 

We obtain the mean displacement by summing over the three micro-trajectories that can occur 

during a given time step as 

      0210++  tktkatkax . (1.1) 

We can compute the variance as the average of the square of displacement, once again summing 

over all three possibilities at a given time. 

      tkatktkatkax  22222 2210++  (1.2) 

The variance of the total displacement is N = t /t times greater resulting in  

  tkaxtot

22 2  (1.3) 

which is the result for diffusive spreading if we define a2k as the diffusion constant D. 

This trajectories and weights approach can also be used to derive the governing equation for p(x,t), 

the probability density of finding a particle at position x and time t. Here, we sum over all micro-

trajectories starting at time t that result in the particle being at position x at time t+t. In order to 

find the particle at position x and time t, the particle must be (1) at position x and stays put during 

the next time step, (2) at position ax  and jumps to the right during the next time step, or (3) at 

position x+a  and jumps to the left during the next time step. The associated probabilities are then 

p(x,t), p( ax ,t), and p(x+a,t), respectively. Using the probability weights from Fig. 1, we can 

write p(x,t+t) as a sum of trajectories, 

         taxptktaxptktxptkttxp ,  ,+,21+,  , (1.4) 

stay put jump right jump left 
 

 

leading to a discrete differential (or difference) equation for p(x,t). 
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In writing Eqn. 1.4, we make use of the so-called Markov property, namely that the probability of 

a micro-trajectory at time t is independent of the previous history of the particle. This allows us to 

express the probability of each outcome as a product of probabilities. To arrive at the more familiar, 

continuous diffusion equation we use the Taylor expansions 
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Substituting these formulas into Eqn 1.4 gives 
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Substituting D for a2k and writing the micro-trajectories in terms of concentration, c we arrive at 
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Solution to the diffusion equation 

In order to examine the biological consequences of diffusion, we could measure how a 

concentration spike diffuses over time. In particular, if at time t = 0 we start with N molecules in 

an infinitesimally small region around x = 0, the concentration profile will evolve as 
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(1.9) 

This solution is often denoted as the Green’s function of the diffusion equation and has a Gaussian 

form (Eqn. 1.9) with a linearly increasing width (4Dt) (Fig. 2). Dividing Eqn. 1.9 by N gives us the 

probability density of finding a particle between x and x+dx.  
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Fig. 2. Time evolution of the concentration field. 

Diffusion equation solutions are shown at various time 

points for an initial concentration profile of an 

infinitesimally wide spike at t = 0. [1]
 

 

 

 

 

 

One of the most interesting quantities among diffusive dynamics is the width of the distribution,

2x , which broadens over time. To compute this broadening, we need to evaluate 2x  as
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(1.10) 

where we make use of the probability distribution for finding a particle at position x and time t. 

(This is also related to Eqn. 1.9 by c(x,t)/N.) After evaluation of this integral, we find the mean 

squared displacement of the distribution for 1-D diffusion is 
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  (1.11) 

and further, for 2-D diffusion: Dtx 42   and 3-D diffusion: Dtx 62  . 

The diffusion constant is a microscopic quantity. In this experiment, you will measure the diffusion 

constant by analyzing the mean squared displacement 2x  of individual particles. To estimate the 

diffusion constant, it is often convenient to use the Einstein relation  

                                                                        


Tk
D B .   (1.12) 

It provides an important link between the microscopic diffusion constant D and the macroscopic 

friction coefficient 
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Bacterial Swimming Behavior 

Swimming is a common strategy for motility, driven by rotating flagella that extend from the cell 

body. Each flagellum consists of a long (~10µm) and thin (~20 nm) helical filament which is turned 

like a screw by a rotary motor at its base (Fig. 3).  

 

Fig. 3. Microscopic images 

of the bacterium Bacillus 

subtilis. Top: The bright-

field image shows the rod-

like cell body. Bottom: The 

fluorescence image shows 

flagella emanating from the 

cell body. 

 

In the absence of external stimuli, the flagella switch between counter-clockwise (ccw) and 

clockwise (cw) rotation. During ccw rotation bacteria swim in nearly linear trajectories (“runs”) 

(Fig. 4). The flagella bundle, pushing the cell steadily forward. (Hydrodynamic interactions 

between the flagella and the surrounding fluid, leading to movement of the bacterial cell body, will 

not be discussed here.) Each run is interrupted by an erratic rotation (“tumble”) of the cell in place, 

caused by flagella rotating cw. Once the bacterium begins rotating ccw, it swims off steadily again, 

in a new direction [5]. 

 

Fig. 4 Time lapse of a swimming bacterium. When flagella rotate ccw, they bundle together and 

propel the bacterium through aqueous solution. When the flagella rotate cw, they fly apart and 

induce tumbling motion. 

 

During the tumbling period, bacteria nearly lose directional memory. Thus, at short time scales, 

the bacterial movement is ballistic (i.e. bacteria swim straight) with a characteristic velocity v (Fig. 

5b) that is determined by the flagella motor and the hydrodynamic interaction of the flagella with 

the fluid. At long time scales, they perform a random walk (Fig. 5a). In other words, flagella driven 

movement can be thought of as increasing the effective diffusion constant of the bacterium. 
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Tumbling randomizes the subsequent swim direction and via modulating the tendency to tumble, 

a biased random walk is achieved, yielding net migration along a concentration gradient. The 

ability to perform directed motion towards or away from substances is essential for bacteria, such 

as Bacillus subtilis, to survive in versatile habitats, with constant competition for nutrients and 

exposure to toxins [6]. 

 

 

 
 

Fig. 5 Flagella-driven bacterial movement at different time scales. a) At time scale of minutes, the 

movement can be described as a random walk. b) At time scales shorter than seconds, the 

movement is ballistic. 

EXPERIMENTAL PROCEDURE 

Questions 

1. Estimate how far a single bacterium would move on average from its starting position after 

10s, 1 h, 1 day. To estimate the diffusion constant of a bacterium you can use the Einstein 

relation. For simplicity, assume that bacteria are spheres.  

2. Determine the diffusion constant of a non-motile mutant (hag) of B. subtilis by analyzing 

the paths of individual bacteria. Do this by plotting the mean squared displacements of 

individual bacteria and average over all bacteria. Use Eqn. 2.2 to calculate the diffusion 

coefficient. Compare your data at 10 s with your prediction and discuss discrepancies. 

3. Repeat (2) using wild type bacteria that can perform flagella-driven motility. Again, plot 

the mean squared displacements of individual bacteria and average the data. Determine the 

correlation time c and the average speed v of a running bacterium using Eqn. 2.3. Also, 

determine c and v by fitting an exponential function of the form 𝑎 𝑒𝑏𝑥 to the velocity 
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autocorrelation function (Eqn. 2.4); compare values. Consider the limit t >> c and calculate 

the effective diffusion constant and compare to Eqn. 2.2. Estimate how far a single 

bacterium moves on average from its starting position after 1 s, 1 h, 1 day.  

4. Perform a Fourier transform and obtain the power spectral density of the mean-square 

displacement of hag and the motile wild type. Discuss the frequency dependency.  

Stochastic Description of Correlated Random walks  

To examine bacterial movement, the trajectory of a motile bacterium can be recorded over time 

(time-lapse microscopy). The average distance explored by that particle, as a function of time, can 

be described by the mean-squared displacement (MSD) 

𝑀𝑆𝐷 = 〈𝑟2(𝑡)〉 = 〈
1

𝑁
∑ (𝑟𝑖(𝑡) − 𝑟𝑖(0))

2𝑁
𝑖=0 〉, (2.1) 

where ri(t) is the distance particle i moved in time t, and N is the number of particles analyzed. 

In the simplest case, a Brownian particle moving freely in three dimensions over long time scales 

(the so-called diffusive regime), the MSD increases linearly with time (t): 

〈𝑟2(𝑡)〉 = 6𝐷𝑡, (2.2) 

where D is the diffusion constant. The shape of the MSD curve may deviate from a linear due to 

movement constraints or external forces. For example, molecular motors such as flagella generate 

directional persistence at short time scales. In such a case, the trajectory of the bacterium can then 

be described by a correlated random walk [11] 
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with a characteristic velocity of v and correlation time c. At short time scales t << c, movement 

is dominated by the flagellum motor driving the bacterium with a velocity v. At long time scales  

t >> c, movement resembles a random walk with increased step length. The characteristic 

parameters c and v may also be extracted from the velocity autocorrelation function  

< 𝑣(𝑡) ∙ 𝑣(𝑡 + ∆𝑡) >= 𝑣2 𝑒
−

∆𝑡

𝜏𝑐 , 
(2.4) 

where 𝑣(𝑡) is the instantaneous velocity of the cell at time t and 𝑣(𝑡 + ∆𝑡) is the velocity at time 

𝑡 + ∆𝑡 (both obtained from the first order derivative of its 2-D position). The average is taken over 

different initial times t.   
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 Cultivation and sample preparation of Bacillus subtilis  

1. The evening before the experiment, the two strains are inoculated in 5 mL LB medium and 

incubated overnight at 37˚C, 250 rpm. 

2. The day of the experiment, 1 mL of the overnight liquid culture is washed by centrifuging 

at 5 G for 2 min, decanting, and resuspending in 1 mL of competence medium. The washed 

solution is diluted in competence medium to OD = 0.05 (end volume of 5 mL) and 

incubated in a shaker for 3 h. 

3. After the incubation period, solutions are, again, diluted to OD = 0.02, and 50 - 100 μL are 

pipetted onto a microscope slide. A clean coverslip is placed on top, sandwiching the 

sample in between. The slide and coverslip are then sealed with a hot wax mixture (valepp). 

Table 1. Bacterial strains  

B. subtilis  strain  Genotype Comments 

WT hisH2 metC typF7 Wild type 

hag hag::Tn917-lac hisA1 metB5 leu8 Immotile, no flagella 

 

Data Acqusition 

 To image the bacteria, we will use an inverted microscope equipped with a high-speed 

camera and 20x air objective. 

 The temperature of the microscope stage should be set a 37°C. Samples should not be 

imaged for longer than 15 minutes, as they will overheat from bright-field illumination. 

 Record a video of swimming bacteria. Cells can exceed velocities of 50µm/s, thus a 

reasonable frame rate of 10 fps is recommended. No image binning is required. 

Data Analysis 

 Tracking will be done with a self-built tracking program (MATLAB), provided by your 

supervisor. 

 Tracking parameters must be adjusted in the program to accurately track the various strains. 

 Check the individual tracks and discard any with defects, such as cell crossovers and cells 

that have adhered to microscope slide surface. 
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